Trithallium(I) Phosphate, an Optical Second-Harmonic Generator

By Allan Zalkin and David H. Templeton
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

and David Eimerl and Stephan P. Velsko
Lawrence Livermore Laboratory, Livermore, California 94550, USA

(Received 27 March 1986; accepted 18 June 1986)

Abstract. $\mathrm{Tl}_{3} \mathrm{PO}_{4}, M_{r}=708.08$, hexagonal, $P 6_{3}, a$ $=8.369(8), \quad c=5.111(5) \AA, \quad V=310.0 \AA^{3}, \quad Z=2$, $D_{x}=7.59 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda\left(\alpha_{1}\right)=0.70930 \AA, \quad \mu=$ $787.6 \mathrm{~cm}^{-1}, F(000)=580, T=296 \mathrm{~K}, R=0.017$ for 241 reflections. The thallium(\mathbf{I}) ion is coordinated to oxygen from three different phosphate groups at distances 2.529 (7), 2.553 (5) and 2.555 (8) \AA. These distances are comparable to the shortest $\mathrm{Tl}-\mathrm{O}$ distances reported for other compounds.

Introduction. In a survey of optical second-harmonicgenerating materials, $\mathrm{Tl}_{3} \mathrm{PO}_{4}$ powder was found to produce a large second-harmonic intensity relative to quartz. This observation and the large birefringence observed for this material suggested that it might be a useful crystal for frequency conversion of laser light. To aid in understanding the properties of $\mathrm{Tl}_{3} \mathrm{PO}_{4}$, and to clarify the relationship of its structure to those of LiIO_{3} and KLiSO_{4}, which are well known second-harmonic generators in the same space group (Choy, Jerphagnon \& Kurtz, 1979), an accurate structure refinement was desirable. The space group of thallium(I) phosphate was proposed by Borie (1949). Powder patterns of thallium(I) phosphate (Swanson, Gilfrich \& Cook, 1957) and the isomorphous thallium(I) arsenate (Swanson, Morris, Stinchfield \& Evans, 1963) were reported later. Ganne \& Tournoux (1973) published a brief account of the structure.

Experimental. Crystals of the title compound were grown from an aqueous solution of $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$. Thin needle-shaped crystal, 0.03×0.05 $\times 0.15 \mathrm{~mm}$; modified Picker automatic diffractometer, graphite monochromator; cell dimensions from 20 reflections, $20<2 \theta<36^{\circ}$; analytical absorption correction, range 2.7 to 6.9 ; max. $(\sin \theta) / \lambda=0.54 \AA^{-1}$, $h-9$ to $9, k-9$ to $9, l-5$ to 3 ; three standard reflections, $\sigma=1.6,1.8,1.7 \%$, data corrected for variations; 1462 data, 254 unique, $R_{\text {int }}=0.035,13$ data $\left[(\sin \theta) / \lambda<0.2 \AA^{-1}\right]$ given zero weight; thallium positions from Patterson function, remaining atomic
positions from ΔF maps; refinement on $F, 25$ parameters including $f^{\prime \prime}$ for Tl , all atoms anisotropic; $R=0.019, R$ (non-zero-weighted data) $=0.017, w R=$ $0.016, S=1.00 ; w=[\sigma(F)]^{-2}$, derived from $\sigma^{2}\left(F^{2}\right)$ $=\left\{\left[\sigma\left(F^{2}\right) \text {, counting statistics only }\right]^{2}+\left(0.025 F^{2}\right)^{2}\right\} ;$ max. $\Delta / \sigma<0.001$; max. empirical isotropic correction for extinction 40% of F; max. and min. of ΔF synthesis 1.0 and -1.5 e \AA^{-3}; atomic f for Tl^{+}, neutral P and O from International Tables for X-ray Crystallography (1974); local unpublished programs and ORTEP (Johnson, 1965).

The refractive indices were estimated using the Becke line criterion, and the birefringence was obtained from retardation measurements on single grains using a Zeiss microscope equipped with an Ehringhous compensator. The average index was determined to be larger than 2.0 and the birefringence approximately $+0 \cdot 15$.

Discussion. Atomic parameters, listed in Table 1, are in agreement with and somewhat more precise than those reported by Ganne \& Tournoux (1973).* The structure consists of thallous and phosphate ions connected by a three-dimensional network of $\mathrm{Tl}-\mathrm{O}$ coordinations (Fig. 1). The phosphorus atom and one of the $\mathrm{P}-\mathrm{O}$ bonds of the tetrahedral phosphate ion lie on the threefold axis. The thallium atom is coordinated to three oxygen atoms, each from a different phosphate group. Alternating planar triads of thallium atoms at $z=0$ and $z=\frac{1}{2}$ form a column parallel to the c axis; each Tl atom is nearest neighbor to two Tl atoms in the layer above it and to two Tl atoms in the layer below it at distances of $3.690 \AA$.

The nearest neighbors to the Tl ion (Table 2) are three oxygen atoms at the base of a trigonal pyramid at distances ranging from 2.53 to $2.56 \AA$, with a fourth

[^0]© 1986 International Union of Crystallography
oxygen atom at $3.26 \AA$. Thallium and oxygen exhibit a variety of coordination numbers in other compounds with a range of distances; the shortest values are comparable to those reported here. In $\mathrm{Tl}_{2} \mathrm{HPO}_{4}$ (Oddon, Vignalou, Transquard \& Pèpe, 1979) the Tl-O distances for four kinds of Tl atoms range from 2.51 to $3.17 \AA$; in $\mathrm{Tl}_{2} \mathrm{WO}_{4}$ (Okada, Ossaka \& Iwaii, 1979) the two shortest distances are 2.46 (6) and 2.70 (7) \AA; and in $\mathrm{Tl}(\mathrm{HCOO})$ (Oddon, Tranquard \& Mentzen, 1981) the $\mathrm{Tl}-\mathrm{O}$ distance is $2.56 \AA$. In all these cases the distances less than $2.7 \AA$ involve no more than three oxygen neighbors per thallium ion.

The $f^{\prime \prime}$ of Tl refined to a value of 10.3 (8) electrons and is statistically equivalent to the 9.66 electron value from International Tables (1974). The sign of this $f^{\prime \prime}$ shows that the configuration chosen for the structure is correct, and its magnitude indicates no significant inversion twinning in the specimen.

The structures of $\mathrm{Tl}_{3} \mathrm{PO}_{4}, \mathrm{LiIO}_{3}$ and LKiSO_{4} are quite different. In LiIO_{3} the threefold axes of pyramidal iodate ions lie parallel to the c axis (Svensson, Albertsson, Liminga, Kvick \& Abrahams, 1983, and references therein). In $\mathrm{Tl}_{3} \mathrm{PO}_{4}$ the pseudo-threefold axes of the TlO_{3} groups lie nearly perpendicular to the c axis.

Table 1. Positional and thermal parameters with e.s.d.'s in parentheses

$B_{\mathrm{eq}}=\sum B_{l j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{l} \cdot \mathbf{a}_{j} / 3$				
	x	y	z	$B_{\mathrm{eq}}\left(\AA^{2}\right)$
Tl	$0.35393(5)$	$0.26182(5)$	0	$2.09(2)$
P	$\frac{1}{3}$	$\frac{2}{3}$	$-0.0161(26)$	$1.49(8)$
$\mathrm{O}(1)$	$\frac{1}{3}$	$\frac{2}{3}$	$-0.3166(26)$	$2.3(3)$
$\mathrm{O}(2)$	$0.3966(10)$	$0.8645(10)$	$0.0811(13)$	$2.6(3)$

Fig. 1. Schematic ORTEP showing the contents of a unit cell and the disposition of the Tl ions about the c axis. Numbers inside the atom boundaries are z coordinate $\times 100$. The P atom is hidden under the $\mathrm{O}(1)$ atom. 97% probability ellipsoids are shown.

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Tl}-\mathrm{O}(1)^{\text {iv }}$	2.553 (5)	$\mathrm{O}(1)^{\mathrm{iv}}-\mathrm{Tl}-\mathrm{O}(2)^{\text {1ii }}$	84.98 (15)
$\mathrm{Tl}-\mathrm{O}(2)^{\mathrm{vi}}$	2.529 (7)	$\mathrm{O}(1)^{\mathrm{lv}}-\mathrm{Tl}-\mathrm{O}(2)^{\mathrm{vi}}$	84.24 (32)
$\mathrm{Tl}-\mathrm{O}(2)^{\text {lii }}$	$2 \cdot 555$ (8)	$\mathrm{O}(2)^{\mathrm{iij}}-\mathrm{Tl}-\mathrm{O}(2)^{\mathrm{vi}}$	$80 \cdot 28$ (18)
$\mathrm{P}-\mathrm{O}(1)^{\text {i }}$	1.536 (18)	$\mathrm{O}(1)^{1}-\mathrm{P}-\mathrm{O}(2)^{1}$	108.7 (6)
$\mathrm{P}-3 \mathrm{O}(2)^{\text {i,11,iiI }}$	1.547 (8)	$\mathrm{O}(2)^{\mathbf{i}}-\mathrm{P}-\mathrm{O}(2)^{\text {il }}$	$110 \cdot 2$ (5)
$\mathrm{T} \mathrm{l}^{\mathbf{i}}-4 \mathrm{Tl}^{\mathrm{r}, \text { vil, vili. } 1 \times}$	3.690 (3)	$\mathrm{T} 1^{\mathrm{xj}}-\mathrm{O}(1)-\mathrm{T} 1^{\text {x }}$	107.3 (3)
		$\mathrm{T}{ }^{\times 1}-\mathrm{O}(1)-\mathrm{P}^{\text {i }}$	111.5 (3)

Symmetry code: (i) x, y, z; (ii) $1-y, 1+x-y, z$; (iii) $y-x, 1-x$, z; (iv) $1-x, 1-y, \frac{1}{2}+z$; (v) $y, y-x, \frac{1}{2}+z$; (vi) $1+x-y, x, z-\frac{1}{2}$; (vii) $y, y-x, z-\frac{1}{2}$; (viii) $x-y, x, z-\frac{1}{2}$; (ix) $x-y, x, \frac{1}{2}+z$; (x) y, $1-y+x, z-\frac{1}{2}$; (xi) $1-x, 1-y, \frac{1}{2}-z$.

There are no atomic groups in KLiSO_{4} (Bradley, 1925) which are analogous to the highly-polarizable pyramids in the other two structures. The very large positive birefringence in $\mathrm{Tl}_{3} \mathrm{PO}_{4}$ is opposite in sign from that in LiIO_{3} and much larger than that of KLiSO_{4} (Cook \& Jaffe, 1979).

This work was performed under the auspices of the US Department of Energy and Lawrence Livermore National Laboratory under contract No. W-7405-48, and supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC03-76SF00098.

References

Borie, B. (1949). MS Thesis, Physics Dept., Tulane Univ.
Bradley, A. J. (1925). Philos. Mag. 49, 1225-1237.
Choy, M. M., Jerphagnon, J. \& Kurtz, S. K. (1979). LandoltBörnstein New Series III, Vol. 11, pp. 671-743. Berlin: Springer.
Cook, W. R. \& Jaffe, H. (1979). Landolt-Börnstein New Series III, Vol. 11, p. 612. Berlin: Springer.
Ganne, M. \& Tournoux, M. (1973). C. R. Acad. Sci. Sér. C, 276, 1755-1758.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Oddon, Y., Tranquard, A. \& Mentzen, B. F. (1981). Inorg. Chim. Acta, 48, 129-132.
Oddon, Y., Vignalou, J.-R., Tranquard, A. \& Pèpe, G. (1979). Acta Cryst. B35, 2525-2528.
Okada, K., Ossaka, J. \& Iwail, S. (1979). Acta Cryst. B35, 2189-2191.
Svensson, C., Albertsson, J., Liminga, R., Kvick, A. \& Abrahams, S. C. (1983). J. Chem. Phys. 78, 7343-7352.
Swanson, H. E., Gilfrich, N. T. \& Cook, M. I. (1957). Natl Bur. Stand. (US) Circ. 539, 7, 58-59.
Swanson, H. E., Morris, M. C., Stinchfield, R. P. \& Evans, E. H. (1963). Natl Bur. Stand. (US) Monogr. 25, Sect. 2, 37.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43159 (4 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

